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Background



Symbolic execution
● Trace computations in a program, 

building up symbolic formulas

● At points of interest (e.g., branches), 

generate new inputs:

○ Substitute desired value into 

symbolic expression

○ Solve for the program input

● Many different implementations

King: Symbolic Execution and Program Testing 4



Design space

Previous work marked in the diagram:

① Kim et al.: Testing intermediate representations for binary analysis

② Palikareva and Cadar: Multi-solver support in symbolic execution

     and Liu et al.: A comparative study of incremental constraint solving approaches in symbolic execution
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Intermediate representation
● Abstract representation of a program

○ Often in static single assignment form (SSA)

○ Small instruction set

● Designed for different purposes

○ Compilers: LLVM bitcode

○ Dynamic instrumentation: VEX

○ Binary analysis: BIL, REIL

○ Many more; see Kim et al.: Testing 

Intermediate Representations for Binary 

Analysis

define dso_local float
@avg(i32, i32) local_unnamed_addr #0
{
  %3 = sitofp i32 %0 to double
  %4 = sitofp i32 %1 to double
  %5 = fmul double %4, 5.000000e-01
  %6 = fadd double %5, %3
  %7 = fptrunc double %6 to float
  ret float %7
}

LLVM bitcode generated by Clang
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Our study
Intermediate representations are commonplace in symbolic execution.

But which one is best?

What is their impact in the first place?

We conducted a systematic study; work to be published at ACSAC 2019.
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SMT solving
● “Satisfiability modulo theories”

○ SAT solver unites several theory solvers

○ Most interesting theory for us: bit vectors

○ Popular implementation: Z3 (MS Research)

● SAT: Boolean satisfiability problem

○ Known to be NP-complete

○ Good heuristics make many instances 

tractable

● Used for test case generation in symbolic 

execution

;; Integers x, k1 and k2
(declare-const x (_ BitVec 32))
(declare-const k1 (_ BitVec 32))
(declare-const k2 (_ BitVec 32))

;; ...all smaller than 50...
(assert (bvule x #x00000032))
(assert (bvule k1 #x00000032))
(assert (bvule k2 #x00000032))

;; ...and x is divisible by 6 and 7.
(assert (not (= x #x00000000)))
(assert (= x (bvmul k1 #x00000006)))
(assert (= x (bvmul k2 #x00000007)))

;; Solve!
(check-sat)
(get-model)

Example SMT query for Z3
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Our study



Research questions
● Does it matter whether we 

generate IR from source code or 

binaries? How?

● Is one IR more suitable than 

another? What about no IR?
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Implementations under analysis
KLEE

Source code to 

LLVM bitcode

Implemented in 

C++

No native execution

S2E

Binary to LLVM 

bitcode via QEMU

Implemented in 

C/C++

Binary translation 

through QEMU

Based on KLEE

angr

Binary to VEX IR 

(Valgrind project)

Implemented in 

Python

Binary translation 

through Unicorn

Qsym

No IR; execution of 

x86 machine code

Implemented in 

C++

Native execution 

via Intel Pin
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Experiments

Execution speed

● How fast can we execute the IR?

● Crucial property according to Yun et al.

Query complexity

● How complex are the resulting SMT queries? 

● Difficult queries slow down the analysis a lot

Code size

● How does IR generation impact code size?

● Estimate “information content” of IR
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Setup
● Programs from DARPA Cyber Grand Challenge

○ Designed around a simple architecture (“DECREE”)

○ Source code available

○ Meant to be used as a test set for vulnerability detection (and exploit generation)

● Concolic execution

○ Follow the same fixed path in all engines

○ No bias from different exploration strategies

○ Path based on provided crashing inputs (“proofs of vulnerability”)

● Environment

○ Ubuntu 16.04

○ 24 GB of memory

○ 30 minutes per execution or solver run (whichever applies to the experiment)
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Challenges
● We had to patch all engines

○ Add support for program particularities (e.g., support mmap in KLEE)

○ Insert measurement probes

● Still, only 24 out of 131 programs work in all four engines 😞
○ Unsupported instructions (e.g., floating-point arithmetic)

○ Excessive memory or CPU time consumption

○ Others concur: e.g., see Qu and Robinson, as well as Xu et al.

● Is there still value in our study?

○ Results are not representative for the set of all possible programs under test

○ But: scientific progress requires evaluation and comparison!

○ Need a methodology for comparing symbolic execution engines

○ We can still identify trends
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Results: Code size
● Measured IR inflation rate

○ Ratio between number of machine-code 

instructions and number of IR instructions

● Added two extra data points

○ McSema: lifter from binaries to LLVM bitcode

○ angr on ARM: apply angr’s VEX translation to 

ARM machine code

● IR from source code is more concise

● S2E: problem with double translation?

○ Machine code → QEMU → LLVM bitcode

Inflation rate per IR generation mechanism

across 123 CGC programs and 106 coreutils binaries;

boxes contain 50% of the data points with the line marking the 

median, whiskers extend to 1.5 times the interquartile range, 

dots are outliers 15



Results: Execution speed
● Measured IR execution rate

○ Symbolically executed instructions per 

unit of time

○ Normalized by average inflation rate

● Qsym unsurprisingly fastest

● angr: slow because of Python

● KLEE and S2E: same basis, but S2E 

executes less expressive IR

● Absence of IR seems beneficial

Execution speed of symbolically executed instructions

across 24 CGC programs
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Example: Query complexity
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(= (_ bv55 8)
   ((_ extract 7 0)
    ((_ zero_extend 24)
     (select stdin (_ bv3 32)))))

(= (_ bv0 64)
   (bvand
    (bvadd
     ;; 0xFFFFFFFFFFFFFFC9
     (_ bv18446744073709551561 64)
     ((_ zero_extend 56)
      ((_ extract 7 0)
       (bvor
        (bvand
         ((_ zero_extend 56)
          (select stdin (_ bv3 32)))
         ;; 0x00000000000000FF
         (_ bv255 64))
        ;; 0xFFFF88000AFDC000
        (_ bv18446612132498620416 64)))))
    (_ bv255 64)))

Queries generated for the C expression

stdin[3] == 55

by KLEE (below) and S2E (right)



Results: Query complexity
● Measured query rate

○ Number of solved queries per unit of 

time

● KLEE’s queries are simplest

○ Potentially because they are derived 

from high-level IR

● S2E gets close to KLEE

○ Internally based on KLEE

○ But different IR generation mechanism

● Is LLVM bitcode beneficial?

Query rates as a proxy for query complexity across

across 23 CGC programs 18



Discussion



Source vs binary
● Large impact on IR size, thus 

possibly on execution speed

● SMT queries derived from source 

are easier

Research question 1
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Difference between IRs
● No observable difference 

between LLVM bitcode and VEX

● Fastest execution is achieved by 

using machine code directly

Research question 2
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Remark: Implementation language

● Independent of the choice of IR, but with a large impact on the overall result

● Implementation language influences the possible use cases

○ Python makes angr flexible for scripting and interactive exploration but is too slow for batch 

processing

○ C++ enables Qsym, KLEE and S2E to execute fast but limits extensibility

● Other factors, e.g., development speed, maintainability
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Conclusion



What did we find?

For easy queries, generate IR from source code.

For fast execution, work on machine code directly.

Limitations: small data set, effects of IR and IR generation are hard to isolate.
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What’s next?
● Assess the quality of generated test cases, not just the speed of generation

○ Interesting properties: effect on code coverage, similarity to existing test cases, directedness

● Find out what makes queries hard for SMT solvers

○ Some operations known to be tough (e.g., division of bit vectors)

○ Effect of compiler optimizations?

○ Goal: produce “solver-friendly” queries

● End-to-end comparison of symbolic execution engines

○ Compare from input to output, i.e., from program under test to discovered bugs

○ Many sources of bias

○ Large differences in implementation
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Thank you!

{sebastian.poeplau, aurelien.francillon}@eurecom.fr

http://www.s3.eurecom.fr/tools/symbolic_execution/

http://www.s3.eurecom.fr/tools/symbolic_execution/

