Systematic comparison of symbolic execution systems

Intermediate representation and
Its generation

Sebastian Poeplau, Aurélien Francillon
EURECOM, Sophia Antipolis, France
(to appear at ACSAC 2019)

Agenda

1.
2.

3.
4.

Background

Our study

a. Systems under analysis
b. Experimental setup

c. Results

Discussion

Conclusion

Photo by Hope House Press - Leather Diary Studio on Unsplash

Background

Symbolic execution

e Trace computations in a program,
building up symbolic formulas
e At points of interest (e.g., branches),
generate new inputs:
o Substitute desired value into

symbolic expression

o Solve for the program input

e Many different implementations

King: Symbolic Execution and Program Testing

Design space

IR generation Execution Symbolic backend

source code
IR

execution

compiler

. v 1 . .
machine code f--------==---==------ i---¥ native execution ,
H 1 1

library/OS
interface

Previous work marked in the diagram:
(D Kim et al.: Testing intermediate representations for binary analysis
(@ Palikareva and Cadar: Multi-solver support in symbolic execution

and Liu et al: A comparative study of incremental constraint solving approaches in symbolic execution

Intermediate representation

e Abstract representation of a program

, o Often in static single assignment form (SSA)
define dso local float

@Qavg (132, 132) local unnamed addr #0 o Small instruction set
{

23 = sitofp 132 %0 to double e Designed for different purposes
%4 sitofp 132 %1 to double

o Compilers: LLVM bitcode
$5 = fmul double %4, 5.000000e-01

%6 fadd double %5, %3 o Dynamic instrumentation: VEX

%7 fptrunc double %6 to float Bi i T TS0
(@) o
ret float %7 mary ana YSIS. 5

o Many more; see Kim et al.: Testing

Intermediate Representations for Binary

Analysis

LLVM bitcode generated by Clang

Our study

Intermediate representations are commonplace in symbolic execution.

But which one is best?

What is their impact in the first place?

We conducted a systematic study; work to be published at ACSAC 2019.

SMT solving

“Satisfiability modulo theories”

o SAT solver unites several theory solvers

o Most interesting theory for us: bit vectors

o Popular implementation: Z3 (MS Research)
SAT: Boolean satisfiability problem

o Known to be NP-complete
o Good heuristics make many instances

tractable

Used for test case generation in symbolic

execution

;; Integers x, k1l and k2
(declare-const x (_ BitVec 32))
(declare-const k1l (BitVec 32))
(

declare-const k2 (_ BitVec 32))

;7 ...all smaller than 50...

(assert (bvule x #x00000032))
(assert (bvule k1l #x00000032))
(assert (bvule k2 #x00000032))

..and x is divisible by 6 and 7.
(assert (not (= x #x00000000)))
(assert (= x (bvmul k1l #x00000006)))
(assert (= x (bvmul k2 #x00000007)))

;5 Solve!

(check-sat)
(get-model)

Example SMT query for Z3

Our study

Research questions

e Does it matter whether we
generate IR from source code or
binaries? How?

e Is one IR more suitable than
another? What about no IR?

10

Implementations under analysis

Source code to
LLVM bitcode

Implemented in
C++

No native execution

Binary to LLVM
bitcode via QEMU

Implemented in
C/C++

Binary translation
through QEMU

Based on KLEE

Binary to VEX IR
(Valgrind project)

Implemented in

Python

Binary translation
through Unicorn

No IR; execution of
x86 machine code

Implemented in
C++

Native execution
via Intel Pin

11

Experiments

Code size

Execution speed

Query complexity

How does IR generation impact code size?
Estimate “information content” of IR

How fast can we execute the IR?
Crucial property according to Yun et al.

How complex are the resulting SMT queries?
Difficult queries slow down the analysis a lot

Setup

e Programs from DARPA Cyber Grand Challenge

(@)

(@)

(@)

Designed around a simple architecture (“DECREE”)
Source code available
Meant to be used as a test set for vulnerability detection (and exploit generation)

e Concolic execution

(@)

(@)

(@)

Follow the same fixed path in all engines
No bias from different exploration strategies
Path based on provided crashing inputs (“proofs of vulnerability”)

e Environment

(@)

(@)

(@)

Ubuntu 16.04
24 GB of memory
30 minutes per execution or solver run (whichever applies to the experiment)

13

Challenges

e We had to patch all engines
o Add support for program particularities (e.g., support mmap in KLEE)
o Insert measurement probes

e Still, only 24 out of 131 programs work in all four engines @
o Unsupported instructions (e.g., floating-point arithmetic)
o Excessive memory or CPU time consumption
o Others concur: e.g., see Qu and Robinson, as well as Xu et al.

e Is there still value in our study?

Results are not representative for the set of all possible programs under test
But: scientific progress requires evaluation and comparison!

Need a methodology for comparing symbolic execution engines

We can still identify trends

O O O O

14

Results: Code size

Measured IR inflation rate

(@)

Ratio between number of machine-code

instructions and number of IR instructions

Added two extra data points

(@)

(@)

McSema: lifter from binaries to LLVM bitcode
angr on ARM: apply angr’s VEX translation to
ARM machine code

IR from source code is more concise

S2E: problem with double translation?

(@)

Machine code - QEMU — LLVM bitcode

Q
+—
<
-
=i
o
o=
-
<
==
[=}
—

S = N W ks U1 NI O

KLEE McSema S2E angr angr
(ARM)

Inflation rate per IR generation mechanism
across 123 CGC programs and 106 coreutils binaries;
boxes contain 50% of the data points with the line marking the
median, whiskers extend to 1.5 times the interquartile range,
dots are outliers 15

Results: Execution speed

e Measured IR execution rate

o Symbolically executed instructions per
1% 107 unit of time

6 o : :
1X10 o Normalized by average inflation rate
100000

10000
1000
100

10 e KLEE and S2E: same basis, but S2E

1
0.1 executes less expressive IR

e (Qsym unsurprisingly fastest

e angr: slow because of Python

v
—
«
-
=
]
=
=
3]
3]
e
=

(machine instructions/s)

e Absence of IR seems beneficial

Execution speed of symbolically executed instructions
across 24 CGC programs

Example: Query complexity

Queries generated for the C expression
stdin[3] == 55

by KLEE (below) and S2E (right)

(_ bv55 8)
extract 7 0)

_ zero extend 24)
(select stdin (_ bv3 32)))))

(_ bv0 64)
(bvand
(bvadd
;; OxXFFFFFFFFFFEFFEFECO
bv18446744073709551561 64)
(_ zero extend 56)
((_ extract 7 0)
(bvor
(bvand
((_ zero extend 56)
(select stdin (_ bv3 32)))
;7 0x00000000000000FF
(_ bv255 64))
;7 OxFFFF88000AFDCO0O
(_ bvl18446612132498620416 64)))))
(_ bv255 64)))

(_
(

17

Results: Query complexity

® Measured query rate
o Number of solved queries per unit of
time
e KLEE’s queries are simplest

o Potentially because they are derived

from high-level IR
e S2E gets close to KLEE
o Internally based on KLEE

o But different IR generation mechanism

e Is LLVM bitcode beneficial?

—~~
w
S~
w
[}
o
]
(]
=]
o’
SN
)
—
<
'
>
b
)
=
o
o
N

Angr

Query rates as a proxy for query complexity across
across 23 CGC programs

KLEE

18

Discussion

Source vs binary

Research question 1

Large impact on IR size, thus
possibly on execution speed

SMT queries derived from source
are easier

20

Difference between IRs

Research question 2

No observable difference
between LLVM bitcode and VEX

Fastest execution is achieved by
using machine code directly

21

Remark: Implementation language

e Independent of the choice of IR, but with a large impact on the overall result

e Implementation language influences the possible use cases

o Python makes angr flexible for scripting and interactive exploration but is too slow for batch
processing

o C++ enables Qsym, KLEE and S2E to execute fast but limits extensibility

e Other factors, e.g., development speed, maintainability

22

Conclusion

What did we find?

For easy queries, generate IR from source code.

For fast execution, work on machine code directly.

Limitations: small data set, effects of IR and IR generation are hard to isolate.

24

What’s next?

e Assess the quality of generated test cases, not just the speed of generation
o Interesting properties: effect on code coverage, similarity to existing test cases, directedness
e Find out what makes queries hard for SMT solvers

o Some operations known to be tough (e.g., division of bit vectors)
o Effect of compiler optimizations?

o Goal: produce “solver-friendly” queries
e End-to-end comparison of symbolic execution engines

o Compare from input to output, i.e., from program under test to discovered bugs
o Many sources of bias

o Large differences in implementation

25

Thank you!

[sebastian.poeplau, aurelien.francillon}@eurecom.fr

http://www.s3.eurecom.fr/tools/symbolic_execution/

http://www.s3.eurecom.fr/tools/symbolic_execution/

