Rust: Towards Better Code Security
GDR Sécurité / GT SSLR

Pierre Chifflier

pierre.chifflier@ssi.gouv.fr

Agence Nationale de la Sécurité
des Systemes d’Information

27 novembre 2019

Introduction

ANSSI

» Pierre Chifflier
» Head of the Detection Research lab (LED) at ANSSI
» Security, ML, compilers and languages

» Rust evangelist (parse all the things!)

Rust & Security 3/64

https://www.ssi.gouv.fr/en/
https://github.com/rusticata

Outline

» Rust Language Properties

» The Rust Ecosystem

» Foreign Function Interface (FFI)
» Feedback: Suricata

This is not a Rust tutorial. For learning resources, see Rust by Example® or The Rust
Book?

"Rust by Example. https://doc.rust-lang.org/rust-by-example/.
*The Rust Programming Language. https://doc.rust-lang.org/book/.
ANSSI Rust & Security 4/64

https://doc.rust-lang.org/rust-by-example/
https://doc.rust-lang.org/book/

Rust Language Properties

The Beginning

Personal (and maybe unpopular) opinion:

To create a secure program in C you need an almost perfect developer,
aware of all language/compiler gotchas, undefined behaviors, etc.

To create a formal proof, you need an expert in formal methods. Usually
lots of efforts even for small applications, and very far from
implementation.

How to reach other developers?

ANSSI Rust & Security 6/64

Overview

From the official website (http://rust-lang.org):
> Rust is a system programming language barely on hardware.
» No Runtime requirement
» Automatic yet deterministic memory allocation/destruction
» Guarantees memory safety

ANSSI Rust & Security 7/64

http://rust-lang.org

History

» First developed to address memory leakage and corruption bugs
in Firefox
» First stable release in 2015
» Now used in many major projects
» Firefox, Suricata, DropBox, ...
> And being evaluated for others
> Microsoft, Linux Kernel, ...

ANSSI Rust & Security 8/64

General Properties

Low-level

Performance, similar to C

Zero-cost abstraction

Low overhead

Strict Type checking

Ownership, borrowing and lifetimes concepts

>
4
4
>
4
>
>

Combines a static analyzer and a compiler

v

But at a (cognitive) cost for developers

ANSSI Rust & Security 9/64

What is not in Rust

» No GC
» Precise memory control
> No latency

» No Runtime
» Runs fast

» No exceptions
» More predictable control path

This makes Rust usable for embedded systems, for ex.

ANSSI Rust & Security 10/64

Rustc is based on LLVM

The main compiler is rustc
» Intermediate IRs: HIR, MIR
» Compiles to LLVM IR
» Uses 114 by default (LTO!)
» Lots of optimizations (and inlining)

DONTANORRY.

Consequence: usual C tools (gdb, valgrind, perf, etc.) all work!

ANSSI Rust & Security 11/64

Rust Types

» Primitives types

» u8, i8, ul6, usize,...
char (4-byte unicode)
Pointers and references (cannot be null)
Specify sign and size
Prevents bugs due to unexpected
promotion/coercion/rounding

» Separate bool type
> No automatic conversion from/to integer

vVVvVvyyYy

» Enums, Structs, Generic Types

v

Strict separation of bytes and strings (only valid unicode)

> Strict type checking

v

Immutable by default

ANSSI Rust & Security 12/64

Arrays

» Arrays [T; N] are stored with their length

» Fixed-sized arrays and variable-sized arrays

» Boths compile-time and runtime checks on access using []
» Program is killed (panic) on violations

thread ’main’ panicked at ’index out of bounds:

the len is 3 but the index is 4’, src/main.rs:5:13
note: run with ‘RUST_BACKTRACE=1‘ environment variable
to display a backtrace.

ANSSI Rust & Security 13/64

ANSSI

Bounds Checking

» Adds overhead for every access

» Using iterators is strongly advised
» Compiler can sometimes remove extra checks, for ex:

» When able to infer size
» Or, on redundant tests

» Unsafe direct access is possible using get _unchecked

Rust & Security 14/64

Mutability

» Variables must be initialized before use
» By default, variables are immutable
> Checked by compiler

» Themut keyword is used to declare a mutable variable

+ let a: us =o;

2 a=1;
2 | let a: u8 = 0;
| -
| |
| first assignment to ‘a‘
| help: make this binding mutable: ‘mut a‘
3 | a=1;
|

cannot assign twice to immutable variable

ANSSI Rust & Security 15/64

Type Conversions

» No aliasing
» (Casts are allowed (between compatible types)
» Using the from method

» let a = u8:from(256u32);

> Will refuse to build if types are not compatible

error [E0277]: the trait bound ‘u8: std::convert::From<u32>¢
is not satisfied
--> src/main.rs:2:13

|
2 | let a = u8::from(256u32);

ANSSI Rust & Security 16/64

Type Conversions (2)

» Lossy casts using the as keyword

+ let a =256 as us;

» Only available for primitive types
» Compiler still checks what it can

error: literal out of range for ‘u8°‘
--> src/main.rs:2:13

|
2 | let a = 256 as u8;
| ———

ANSSI Rust & Security 17/64

Integer Overflows/Underflows

» Overflows/Underflows can be detected

; let muta: u8 = 255;
2 a=a +1,

thread ’main’ panicked at ’attempt to add with overflow’

» By default, only debug mode

» Or using explicit methods (e.g checked_add, overflowing_add,
wrapping_add)

» Often mistaken (believed to be undefined?)

» match a.checked_add(1) {

> Some(result) =>result,

3 None{ return Err("overflow") }

s}

3Myths and Legends about Integer Overflow in Rust. http://huonw.github.io/
blog/2016/04/myths-and-legends-about-integer-overflow-in-rust/.

ANSSI Rust & Security 18/64

http://huonw.github.io/blog/2016/04/myths-and-legends-about-integer-overflow-in-rust/
http://huonw.github.io/blog/2016/04/myths-and-legends-about-integer-overflow-in-rust/

Traits

Traits describe functionalities a type must provide
» Similar to interfaces in OOP
» Used to constrain types in generic functions

» Also used to allow/forbid core functions

> Clone, Copy, Eq, PartialEq,
> Prevents type/semantic errors (e.g copying a type which should
not)

1 5| let d = Dummy{a:o, b:o }

> | — move occurs because ‘d’ has type ‘Dummy’,
3 which does not implement the ‘Copy’ trait
+ 6| fld);

s | —value moved here

s 7| let x =d.a;

7 AAA value used here after move

ANSSI Rust & Security 19/64

Rust’s Borrowing and Ownership

Compiler enforced:
» Every resource has a unique owner
» Other can borrow (i.e create an alias) with restrictions
» Owner cannot change or delete its resource while it is borrowed
» When the owner goes out of scope, the value is dropped

= No runtime
= Memory safe
= Thread safe

ANSSI Rust & Security 20/64

Borrowing restrictions

The 4 rules of borrowing:
» You cannot borrow a mutable reference from an immutable object

» You cannot borrow more than one mutable reference
» You can borrow multiple immutable references

» A mutable and an immutable reference cannot exist
simultaneously

» The lifetime of a borrowed reference must end before the lifetime
from the owner object

These rules prevent:
> Side-effects (esp. when calling functions)
> Race conditions
> Use-after-free

ANSSI Rust & Security 21/64

Lifetimes

» The Lifetime is the length of time a variable is usable

» Checked by the compiler
> Infered when possible, but often has to be explicit specified

> Lifetimes can be anonymous or named
» Allocation and destruction are inserted by compiler
» No runtime (except allocation/destruction)

» Usually similar to the variable scope
» Rust 1.36 introduced Non-Lexical Lifetimes (NLL)

2 let o = f(); //" Introduce scoped value: ‘0.

s} // ‘o' goes out of scope andis dropped.

ANSSI Rust & Security 22/64

Lifetime and References

> Lifetimes prevents dangling pointers/references

: letr; // Introduce reference: ‘r’.

2 |

3 let i =1; //" Introduce scoped value: ‘i".

4 r = &i; // Store reference of ‘i’ in ‘r.

5} // 'i" goesout of scope andis dropped.

6

7 printin!("{}", r); // ‘v still refers to ‘i
5 r = &i; // Store reference of ‘i‘ imn ‘r°¢.

““““ borrowed value does not live long enough

6

} // ‘i¢ goes out of scope and is dropped.
- ‘i‘ dropped here while still borrowed

7
8 | println!("{}", r); // ‘r‘ still refers to ‘if.
- borrow later used here

ANSSI Rust & Security 23/64

Lifetime and References (2)

> Lifetimes also indicates (polymorphic) constraints between
objects

1 struct Userinfo<’a> {
2 name: &'a str

-

» The 'ais the name of the lifetime
» This tells the compiler that name cannot be freed before UserInfo

» Each instance of UserInfo will have its own lifetime
> This prevents dangling pointers and memory leaks
> Objects can have multiple lifetime declarations (adding
constraints)

1 struct UserInfoa<’a, 'b> {
2 name: &'a str,
3 address: &b str

1
ANSSI Rust & Security 24/64

Ownership and Lifetimes

» Assignment changes ownership
> For ex. function calls

struct Dummy{ a: i32, b:i32}
fn take(arg: Dummy) { }

fn foo() {
let mut res = Dummy {a: o, b: o};
take(res); // res is moved here
printIn!("res.a = {}", res.a); // COMPILE ERROR

W ® N O L A W N o

}

» Ownership is moved from res to arg
» Additionally, arg is freed at end of function
» This is required for thread safety

ANSSI Rust & Security 25/64

Concurrency and Thread Safety

1 struct Dummy{a:i32, b: i32 }

s fn foo() {

4+ let mutres = Dummy{a: o, b: o};

s std: thread: spawn(move ||{ // Spawn a new thread
6 let borrower=&mutres; // Mutably borrow res

7 borrower.a +=1;

s 1)

9 res.a +=1; // Error: res is borrowed
0}

» Borrowing and ownership are the foundations of thread safety

» Some other restrictions apply

> Moved items must be Send + Sync
» Known non-thread-safe items can be marked !Send

ANSSI Rust & Security 26/64

The unsafe keyword

» Some operations are forbidden, except in a function or block
marked unsafe
» Foreign Function Calls (e.g 1ibc calls)
> Assembly
> Raw pointer dereference
» This allows violating some security properties
» But not all of them (e.g types and lifetimes are checked, etc.)

> Better code auditability
» Can be forbidden using #! [forbid (unsafe_code)]

1+ fn say_hello() {

> let msg = b"Hello, world\n";
s unsafe{

4+ write(1, &msg[o], msg.len());
5]

s }

ANSSI Rust & Security 27/64

Common Problems (1)

Rust is evolving fast
» Versions in Linux distributions are often outdated
» rustup is often mandatory

» Some features are only in the nightly version

Most tools require Internet access
» Even for simple operations (creating a project, building it)
» Having a mirror is required for offline development

ANSSI Rust & Security 28/64

Common Problems (2)

Hidden calls to panic
» Many functions can hide calls to panic

» Many published libraries
» Even from std, for ex Duration: : Add
» Some core operators like []

» Ensuring code cannot panic is very hard

Checking for unsafe code
» |t can be prevented in your crate*
» Butis harder to check in dependencies

“A crate is a code package, for ex. a library or binary
ANSSI Rust & Security 29/64

Lack of formal verification tools

» Rust was made from ideas of many languages
> |t was not designed from a global grammar
» Formal reasoning/verification tools do not yet exist

> They will require models for complex properties (lifetimes,
borrowing, ownership)
> See Oxide®, Rustbelt® and Prusti’

>Aaron Weiss et al. Oxide: The Essence of Rust. 2019. arXiv: 1903.00982 [cs.PL].

SRalf Jung et al. “RustBelt: securing the foundations of the Rust programming
language.” In: 2.POPL (Jan. 2018), 66:1-66:77 ISSN: 2475-1421. DOI:
https://doi.org/10.1145/3158154.

7 A static verifier for Rust, based on the Viper verification infrastructure. http://
prusti.ethz.ch.

ANSSI Rust & Security 30/64

https://arxiv.org/abs/1903.00982
https://doi.org/https://doi.org/10.1145/3158154
http://prusti.ethz.ch
http://prusti.ethz.ch

Summary: Key Security Properties

Property Threat Covered

Bounds Checking OOB access

Checked Arithmetic Integer underflows/overflows
Mandatory Initialization | Use of uninitialized memory
Format String Types Format String errors

Lifetimes Memory Leaks, Use-After-Free
Borrowing,Ownership Memory errors

Ownership Data races

unsafe® Unintended dangerous operations

8unsafe can break all of the above properties!

ANSSI Rust & Security 31/64

The Rust Ecosystem

Cargo (1)

cargo is the main Rust tool

» Handles all tasks: building, checking dependencies, running tests,
publishing crates, ...

» Based on subtools
» Extensible

/N Assumes an internet connection

ANSSI Rust & Security 33/64

Cargo (2)

cargo encourages good practises®
» Unit tests (cargo test)

> Can be inline (unit tests) or in separate tree (integration tests)
» Can also be in documentation

» Documentation (cargo doc)

> Inline documentation
> pragma can require doc for exported functions

» Benchmarks (cargo bench)
» Performance measure

These are part of the core tools

°Good practises are not security properties, but contributes to security and helps
finding regressions/breaking changes

ANSSI Rust & Security 34/64

crates.io

Main crates repository: https://crates.io

» Similar to opam, pip and other repositories
» Anybody can upload a crate

» No review process
> No validation (e.g License compatibility)

> Quality/maintenance may vary

ANSSI Rust & Security 35/64

https://crates.io

Clippy

» Lints/Common Mistakes/Idiomatic checks in categories:
> Correctness
> Style
> Complexity
> Performances
> ...
» Easily integrated into QA

» Can be extended with custom checks

ANSSI Rust & Security 36/64

Other Tools of Interest (for security)

audit: check dependencies for crates with security vulnerabilities
crev: collaborative code review system
fuzz: integration with 1ibFuzzer

geiger: find usages of unsafe Rust code
» Including in dependencies

4
| 4
>
>

\4

miri: find certain undefined behaviors

v

outdated: find out of date dependencies

These tools are not part of the core distribution

ANSSI Rust & Security 37/64

cargo fuzz (1)

Fuzzing Rust Code
» Write a fuzzer (call function)

1 #[export_name="rust_fuzzer_test_input"]
> pub extern fn go(data: &[u8]) {

s let_=der_parser:parse_der(data);
4}

» Call libFuzzer

1 $ cargo +nightly fuzz run ——jobs 24 fuzzer_parse_der

5 [2]1#1188 NEW cov: 1106 ft: 6985 corp: 576/91Kb lim: 42560
4+ exec/s:1188 rss: 66Mb L: 15/3674 MS: 4

s CopyPart—EraseBytes—ChangeByte—ChangeBit—

» Uses a corpus by default

ANSSI Rust & Security 38/64

cargo fuzz(2)

Can be combined with coverage
» For ex. with kcov

1 $ kcov ——include—path .,.. /cov \
> ./target/debug/fuzzer_parse_der corpus/fuzzer_parse_der/*

» Shameless citation of author’s blog™

GCoverage percent -
0.0%
98.6%
99.1%
100.0%
100.0%
100.0%

zzers/fuzzer parse_de

"°Fuzzing Rust code: cargo-fuzz and honggfuzz. https://www.wzdftpd.net/
blog/rust-fuzzers.html.
ANSSI

Rust & Security 39/64

https://www.wzdftpd.net/blog/rust-fuzzers.html
https://www.wzdftpd.net/blog/rust-fuzzers.html

Foreign Function Interface (FFI)

Interoperability

Foreign Function Interface
> Rust is designed to be interoperable with other languages

> Calling functions
> Accessing foreign objects
> Exposing objects/functions

» All of this requires unsafe code

Goals

» Wrap C libraries and create safe abstractions
> Create “safe zones” inside programs

> Perform dangerous operations safely
> Exposed as C modules

» Use libraries
» Access hardware

ANSSI Rust & Security 41/64

Some General Points on FFI

» Rustis based on LLVM

> This simplifies interoperability
» However, Rust has its own memory model
» Extra care must be take to

P Access or expose data properly

» Avoid making the memory model angry

» Handle lifetimes of foreign objects

» Ensure a robust interface (e.g handling
unwinding)

ANSSI Rust & Security 42/64

Data Layout

> Rust types use a specific representation

> For simple types, layout can be predicted
» Alignment and padding may differ from C
> Layout can change with compiler versions

» Some types can use C representation repr (C)

> Tells the compiler to use the exact C layout
> Can be coupled with bindgen or cbindgen to generate headers

» Other representations exist (transparent, packed, ul6, ...)
» Not all types have a defined C representation (e.g enums)

ANSSI Rust & Security 43/64

Function Calls

» Rust has its own ABI

> Name mangling

» Hash added for specialization/versioning
» Some functions can be marked extern "C"
» Input arguments are trusted by the compiler

» Values must be verified
> Type coercions must be applied
> Lifetimes must be added (or removed) manually

ANSSI Rust & Security 44164

CTypes

::std::ffiand ::std::os::raw contain FFl types

Rust Wrapped CType | C

String | CString char *
&str CStr char *f
void c_void void *

fOnly if valid UTF-8, else mapped to & [u8]

ANSSI Rust & Security 45/64

FFl Good Practises

» Write minimal unsafe layer (or generate it)
» Test input values
> Build Rust objects
> Call safe code
» Extract result, convert it back to C
» Unwinding panics must be caught
> Use opaque types when possible
> Memory from language x should (must) be freed in language x

ANSSI Rust & Security 46/64

The Rustonomicon

The Dark Arts of Unsafe Rust™ book covers
» Safe/Unsafe calls, and how to create safe abstractions
Types, memory representation and coercions
Exception safety

| 4
>
» Uninitialized memory
» Concurrency

>

"Rustonomicon. https://doc.rust-lang.org/nomicon/.

ANSSI Rust & Security 47/64

https://doc.rust-lang.org/nomicon/

Feedback: Suricata

Suricata

Suricata™ is a Network Intrusion Detection
system. It has to

» Parse untrusted data
» Containing complex protocols
> And apply lots of detection rules SU A'I'A

» At very high speed

This is the perfect candidate!

"?Suricata: Open Source IDS / IPS / NSM engine. https://suricata-ids.org/.
ANSSI Rust & Security 49/64

https://suricata-ids.org/

Codebase in 2016

» Open Source

» ~400 000 lines of C
» Many parsers

» Low-level network layers (IP, TCP, ...)
> Application layers (HTTP, TLS, ...)

» Heavily multithreaded

ANSSI Rust & Security 50/64

Hardening Suricata

Rusticata (shameless citation #2):
» Proof of concept code
» Presented at Suricon 2016™

» Integration of Rust into the detection engine

Suricata

Ccode : Rust code

Cengine Rusticata

helper cal
functions

TLS Parser
call call
‘ app-layer-rust } } RParser-TLS } tls-parser
[update | updat
‘ Session state ‘ ‘ TLS State ‘
-

get ‘
ge
detect-rust |

3Pierre Chifflier. Securing Security Tools. https://suricon.net/
highlights-suricon-2016/. Suricon. 2016.

ANSSI Rust & Security

51/64

https://suricon.net/highlights-suricon-2016/
https://suricon.net/highlights-suricon-2016/

Rust Parsers

» Mostly based on Nom™
» Parser Combinators very easy to map in Rust

> Descending parsing
> Slices of decreasing length
> Length tests everywhere

input

lpfals[s] [efs[ef[r]a]

sub-slice

initial slice

1 tag!("PASS") >> multispace1 >> rest

*Nom: Rust parser combinator framework. https://github.com/Geal/nom.

ANSSI Rust & Security 52/64

https://github.com/Geal/nom

Architecture

» Code separation

» Parsers (pure Rust)
> Interface/helpers (FFI)

ANSSI Rust & Security

53/64

ANSSI

Suricata & Rust

» Rust support added in 4.0 (August 1, 2017)
» Not using Rusticata, but inspired from
> Core team had to control tightly the implementation

» Shipped with new Rust parsers
» SMB, NFS, NTP

» Rust support marked as experimental

Rust & Security 54/64

Changes: Build System

» The Rust code is compiled to an archive file (. a)
> Exposing a C ABI
» Linked into the resulting binary

» Lack of runtime is a key advantage

» Rust not easily usable from autotools+make

» Compiler could be called in Makefile,
> But dependencies would have to be resolved manually
» Choice: cargo is used from autotools

ANSSI Rust & Security 55/64

Changes: Distributing code

Difficulties: package manager vs distributing sources
» cargo uses internet
> breaks offline builds
» cargo fetches dependencies for every build
» breaks reproducible builds

Solution: distributing dependencies (vendoring, cargo vendor)

ANSSI Rust & Security 56/64

Changes: Linux Distributions

» Rust & cargo not shipped in Linux distros (or outdated)

> Many features not usable in practice
> Forced targeting a minimum version
> With time, situation improved

ANSSI Rust & Security 57/64

ANSSI

Changes: Performances

» Benchmarks by Brad Woodberg in 2017 and 2019

» Rust overhead: between 5% and 10%
» May not be an entirely fair comparison ©
> More parsers and features when Rust is enabled

» Considered as acceptable by the core team

Rust & Security 58/64

Rust & Suricata: 2 years later (2019)

» Rust support now mandatory
> Especially for new parsers
» Many included (complex) parsers
> SNMP, Kerberos, SIP, FTP, ...
> Several externally contributed
» 5.5% of total lines of code
» May replace complex parts in the future
» For ex. the DER parser (X.509 certificates)

ANSSI Rust & Security 59/64

Team Feedback

Overall: very good

Macros: hard to understand

Code review: less doubts and dangers
Required some experience in the language

>
>
4
>
4

Some parsers would not have been added if written in C

ANSSI Rust & Security 60/64

Problems not solved yet

» Lots of code duplication for C interface
» Cunit tests vs Rust unit tests
» Doc generation: separate tools

ANSSI Rust & Security

61/64

Conclusion

ANSSI

Summary

» Modern Language (steep learning curve), good for security
» Both a Static Analyzer's ' and a Compiler

» Enforces good practices and checks them

» Huge improvement over C

It will yell at you until your code is acceptable
"®Hard time for average C developers

Rust & Security 63/64

Conclusion

Rust & Security
» Rustis a modern language

> Built with security in mind
> Based on new concepts

» Lacks some tools
> Butis evolving fast

» ANSSI Recommendations'

7 ANSSI Recommendations for secure applications development with Rust.
https://github.com/ANSSI-FR/rust-guide.

ANSSI Rust & Security 64/64

https://github.com/ANSSI-FR/rust-guide

	Introduction
	Rust Language Properties
	The Rust Ecosystem
	Foreign Function Interface (FFI)
	Feedback: Suricata
	Conclusion

