
Rust: Towards Better Code Security

GDR Sécurité / GT SSLR

Pierre Chifflier

pierre.chifflier@ssi.gouv.fr

Agence Nationale de la Sécurité

des Systèmes d’Information

27 novembre 2019

Introduction

Who

Who

◮ Pierre Chifflier

◮ Head of the Detection Research lab (LED) at ANSSI

◮ Security,ML, compilers and languages

◮ Rust evangelist (parse all the things!)

ANSSI Rust & Security 3/64

https://www.ssi.gouv.fr/en/
https://github.com/rusticata

Outline

◮ Rust Language Properties

◮ The Rust Ecosystem

◮ Foreign Function Interface (FFI)

◮ Feedback: Suricata

This is not a Rust tutorial. For learning resources, see Rust by Example1 or The Rust

Book2

1Rust by Example. https://doc.rust-lang.org/rust-by-example/.
2The Rust Programming Language. https://doc.rust-lang.org/book/.

ANSSI Rust & Security 4/64

https://doc.rust-lang.org/rust-by-example/
https://doc.rust-lang.org/book/

Rust Language Properties

The Beginning

Personal (andmaybe unpopular) opinion:

To create a secure program in C you need an almost perfect developer,

aware of all language/compiler gotchas, undefined behaviors, etc.

To create a formal proof, you need an expert in formal methods. Usually

lots of efforts even for small applications, and very far from

implementation.

How to reach other developers?

ANSSI Rust & Security 6/64

Overview

From the officialwebsite (http://rust-lang.org):

◮ Rust is a system programming language barely on hardware.

◮ No Runtime requirement

◮ Automatic yet deterministic memory allocation/destruction

◮ Guarantees memory safety

ANSSI Rust & Security 7/64

http://rust-lang.org

History

◮ First developed to address memory leakage and corruption bugs

in Firefox

◮ First stable release in 2015

◮ Now used in many major projects
◮ Firefox, Suricata, DropBox, . . .

◮ And being evaluated for others
◮ Microsoft, Linux Kernel, . . .

ANSSI Rust & Security 8/64

General Properties

◮ Low-level

◮ Performance, similar to C

◮ Zero-cost abstraction

◮ Low overhead

◮ Strict Type checking

◮ Ownership, borrowing and lifetimes concepts

◮ Combines a static analyzer and a compiler

◮ But at a (cognitive) cost for developers

ANSSI Rust & Security 9/64

What is not in Rust

◮ No GC
◮ Precise memory control
◮ No latency

◮ No Runtime
◮ Runs fast

◮ No exceptions
◮ More predictable control path

This makes Rust usable for embedded systems, for ex.

ANSSI Rust & Security 10/64

Rustc is based on LLVM

The main compiler is rustc

◮ Intermediate IRs: HIR,MIR

◮ Compiles to LLVM IR

◮ Uses lld by default (LTO!)

◮ Lots of optimizations (and inlining)

Consequence: usual C tools (gdb, valgrind, perf, etc.) allwork!

ANSSI Rust & Security 11/64

Rust Types

◮ Primitives types
◮ u8, i8, u16, usize, . . .
◮ char (4-byte unicode)
◮ Pointers and references (cannot be null)
◮ Specify sign and size
◮ Prevents bugs due to unexpected

promotion/coercion/rounding

◮ Separate bool type
◮ No automatic conversion from/to integer

◮ Enums, Structs, Generic Types

◮ Strict separation of bytes and strings (only valid unicode)

◮ Strict type checking

◮ Immutable by default

ANSSI Rust & Security 12/64

Arrays

◮ Arrays [T; N] are storedwith their length

◮ Fixed-sized arrays and variable-sized arrays

◮ Boths compile-time and runtime checks on access using []

◮ Program is killed (panic) on violations

thread ’main’ panicked at ’index out of bounds:

the len is 3 but the index is 4’, src/main.rs:5:13

note: run with ‘RUST_BACKTRACE=1‘ environment variable

to display a backtrace.

ANSSI Rust & Security 13/64

Bounds Checking

◮ Adds overhead for every access

◮ Using iterators is strongly advised

◮ Compiler can sometimes remove extra checks, for ex:
◮ When able to infer size
◮ Or, on redundant tests

◮ Unsafe direct access is possible using get_unchecked

ANSSI Rust & Security 14/64

Mutability

◮ Variablesmust be initialized before use

◮ By default, variables are immutable
◮ Checked by compiler

◮ The mut keyword is used to declare a mutable variable

1 let a: u8 = 0;
2 a = 1;

2 | let a: u8 = 0;

| -

| |

| first assignment to ‘a‘

| help: make this binding mutable: ‘mut a‘

3 | a = 1;

| ^^^^^ cannot assign twice to immutable variable

ANSSI Rust & Security 15/64

Type Conversions

◮ No aliasing

◮ Casts are allowed (between compatible types)
◮ Using the from method

1 let a = u8::from(256u32);

◮ Will refuse to build if types are not compatible

error[E0277]: the trait bound ‘u8: std::convert::From<u32>‘

is not satisfied

--> src/main.rs:2:13

|

2 | let a = u8::from(256u32);

ANSSI Rust & Security 16/64

Type Conversions (2)

◮ Lossy casts using the as keyword

1 let a = 256 as u8;

◮ Only available for primitive types

◮ Compiler still checkswhat it can

error: literal out of range for ‘u8‘

--> src/main.rs:2:13

|

2 | let a = 256 as u8;

| ^^^

ANSSI Rust & Security 17/64

Integer Overflows/Underflows

◮ Overflows/Underflows can be detected

1 let mut a: u8 = 255;
2 a = a + 1;

thread ’main’ panicked at ’attempt to add with overflow’,

◮ By default, only debug mode

◮ Or using explicit methods (e.g checked_add, overflowing_add,

wrapping_add)

◮ Often mistaken (believed to be undefined3)

1 match a.checked_add(1) {
2 Some(result) => result,

3 None { return Err("overflow") }
4 }

3Myths and Legends about Integer Overflow in Rust. http://huonw.github.io/

blog/2016/04/myths-and-legends-about-integer-overflow-in-rust/.

ANSSI Rust & Security 18/64

http://huonw.github.io/blog/2016/04/myths-and-legends-about-integer-overflow-in-rust/
http://huonw.github.io/blog/2016/04/myths-and-legends-about-integer-overflow-in-rust/

Traits

Traits describe functionalities a type must provide

◮ Similar to interfaces in OOP

◮ Used to constrain types in generic functions

◮ Also used to allow/forbid core functions
◮ Clone, Copy, Eq, PartialEq, ...
◮ Prevents type/semantic errors (e.g copying a type which should

not)

1 5 | let d = Dummy{ a:0, b:0 };
2 | − move occurs because ‘d‘ has type ‘Dummy‘,
3 which does not implement the ‘Copy‘ trait
4 6 | f(d);
5 | − value moved here
6 7 | let x = d.a;
7 | ^^^ value used here after move

ANSSI Rust & Security 19/64

Rust’s Borrowing andOwnership

Compiler enforced:

◮ Every resource has a unique owner

◮ Other can borrow (i.e create an alias)with restrictions

◮ Owner cannot change or delete its resourcewhile it is borrowed

◮ When the owner goes out of scope, the value is dropped

⇒ No runtime

⇒ Memory safe

⇒ Thread safe

ANSSI Rust & Security 20/64

Borrowing restrictions

The 4 rules of borrowing:

◮ You cannot borrow amutable reference from an immutable object

◮ You cannot borrowmore than onemutable reference
◮ You can borrowmultiple immutable references

◮ Amutable and an immutable reference cannot exist
simultaneously

◮ The lifetime of a borrowed reference must end before the lifetime

from the owner object

These rules prevent:

◮ Side-effects (esp. when calling functions)

◮ Race conditions

◮ Use-after-free

ANSSI Rust & Security 21/64

Lifetimes

◮ The Lifetime is the length of time a variable is usable
◮ Checked by the compiler
◮ Inferedwhen possible, but often has to be explicit specified

◮ Lifetimes can be anonymous or named

◮ Allocation and destruction are inserted by compiler
◮ No runtime (except allocation/destruction)

◮ Usually similar to the variable scope
◮ Rust 1.36 introduced Non-Lexical Lifetimes (NLL)

1 {

2 let o = f(); // Introduce scoped value: ‘o‘.

3 ...

4 } // ‘o‘ goes out of scope and is dropped.

ANSSI Rust & Security 22/64

Lifetime and References

◮ Lifetimes prevents dangling pointers/references

1 let r; // Introduce reference: ‘r‘.

2 {
3 let i = 1; // Introduce scoped value: ‘i‘.

4 r = &i; // Store reference of ‘i‘ in ‘r‘.

5 } // ‘i‘ goes out of scope and is dropped.
6

7 println!("{}", r); // ‘r‘ still refers to ‘i‘.

5 | r = &i; // Store reference of ‘i‘ in ‘r‘.

| ^^^^^^ borrowed value does not live long enough

6 | } // ‘i‘ goes out of scope and is dropped.

| - ‘i‘ dropped here while still borrowed

7 |

8 | println!("{}", r); // ‘r‘ still refers to ‘i‘.

| - borrow later used here

ANSSI Rust & Security 23/64

Lifetime and References (2)

◮ Lifetimes also indicates (polymorphic) constraints between
objects

1 struct UserInfo<’a> {
2 name: &’a str

3 }

◮ The 'a is the name of the lifetime
◮ This tells the compiler that name cannot be freed before UserInfo

◮ Each instance of UserInfo will have its own lifetime
◮ This prevents dangling pointers andmemory leaks

◮ Objects can have multiple lifetime declarations (adding

constraints)

1 struct UserInfo2<’a, ’b> {

2 name: &’a str,

3 address: &’b str

4 }
ANSSI Rust & Security 24/64

Ownership and Lifetimes

◮ Assignment changes ownership
◮ For ex. function calls

1 struct Dummy{ a: i32, b: i32 }
2

3 fn take(arg: Dummy) { }
4

5 fn foo() {
6 let mut res = Dummy {a: 0, b: 0};
7 take(res); // res is moved here
8 println!("res.a = {}", res.a); // COMPILE ERROR

9 }

◮ Ownership is moved from res to arg

◮ Additionally, arg is freed at end of function

◮ This is required for thread safety

ANSSI Rust & Security 25/64

Concurrency and Thread Safety

1 struct Dummy{ a: i32, b: i32 }
2

3 fn foo() {
4 let mut res = Dummy {a: 0, b: 0};
5 std:: thread:: spawn(move || { // Spawn a new thread
6 let borrower = &mut res; // Mutably borrow res
7 borrower.a += 1;
8 });
9 res . a += 1; // Error : res is borrowed
10 }

◮ Borrowing and ownership are the foundations of thread safety

◮ Some other restrictions apply
◮ Moved items must be Send + Sync
◮ Known non-thread-safe items can bemarked !Send

ANSSI Rust & Security 26/64

The unsafe keyword

◮ Some operations are forbidden, except in a function or block
marked unsafe
◮ Foreign Function Calls (e.g libc calls)
◮ Assembly
◮ Raw pointer dereference

◮ This allows violating some security properties
◮ But not all of them (e.g types and lifetimes are checked, etc.)

◮ Better code auditability

◮ Can be forbidden using #![forbid(unsafe_code)]

1 fn say_hello() {
2 letmsg = b"Hello, world!\n";
3 unsafe{
4 write(1, &msg[0],msg.len());
5 }
6 }

ANSSI Rust & Security 27/64

Common Problems (1)

Rust is evolving fast

◮ Versions in Linux distributions are often outdated
◮ rustup is often mandatory

◮ Some features are only in the nightly version

Most tools require Internet access

◮ Even for simple operations (creating a project, building it)

◮ Having amirror is required for offline development

ANSSI Rust & Security 28/64

Common Problems (2)

Hidden calls to panic

◮ Many functions can hide calls to panic
◮ Many published libraries
◮ Even from std, for ex Duration::Add
◮ Some core operators like []

◮ Ensuring code cannot panic is very hard

Checking for unsafe code

◮ It can be prevented in your crate4

◮ But is harder to check in dependencies

4A crate is a code package, for ex. a library or binary

ANSSI Rust & Security 29/64

Lack of formal verification tools

◮ Rustwas made from ideas ofmany languages
◮ Itwas not designed from a global grammar

◮ Formal reasoning/verification tools do not yet exist
◮ They will requiremodels for complex properties (lifetimes,

borrowing, ownership)
◮ See Oxide5 , Rustbelt6 and Prusti7

5AaronWeiss et al. Oxide: The Essence of Rust. 2019. arXiv: 1903.00982 [cs.PL].
6Ralf Jung et al. “RustBelt: securing the foundations of the Rust programming

language.” In: 2.POPL (Jan. 2018), 66:1–66:?? ISSN: 2475-1421. DOI:
https://doi.org/10.1145/3158154.

7A static verifier for Rust, based on the Viper verification infrastructure. http://

prusti.ethz.ch.

ANSSI Rust & Security 30/64

https://arxiv.org/abs/1903.00982
https://doi.org/https://doi.org/10.1145/3158154
http://prusti.ethz.ch
http://prusti.ethz.ch

Summary: Key Security Properties

Property Threat Covered

Bounds Checking OOB access

Checked Arithmetic Integer underflows/overflows
Mandatory Initialization Use of uninitializedmemory
Format String Types Format String errors

Lifetimes Memory Leaks, Use-After-Free
Borrowing,Ownership Memory errors
Ownership Data races

unsafe8 Unintended dangerous operations

8unsafe can break all of the above properties!

ANSSI Rust & Security 31/64

The Rust Ecosystem

Cargo (1)

cargo is themain Rust tool

◮ Handles all tasks: building, checking dependencies, running tests,

publishing crates, . . .

◮ Based on subtools

◮ Extensible

!△ Assumes an internet connection

ANSSI Rust & Security 33/64

Cargo (2)

cargo encourages good practises9

◮ Unit tests (cargo test)
◮ Can be inline (unit tests) or in separate tree (integration tests)
◮ Can also be in documentation

◮ Documentation (cargo doc)
◮ Inline documentation
◮ pragma can require doc for exported functions

◮ Benchmarks (cargo bench)
◮ Performancemeasure

These are part of the core tools

9Good practises are not security properties, but contributes to security and helps

finding regressions/breaking changes

ANSSI Rust & Security 34/64

crates.io

Main crates repository: https://crates.io

◮ Similar to opam, pip and other repositories

◮ Anybody can upload a crate
◮ No review process
◮ No validation (e.g License compatibility)

◮ Quality/maintenancemay vary

ANSSI Rust & Security 35/64

https://crates.io

Clippy

◮ Lints/Common Mistakes/Idiomatic checks in categories:
◮ Correctness
◮ Style
◮ Complexity
◮ Performances
◮ . . .

◮ Easily integrated into QA

◮ Can be extendedwith custom checks

ANSSI Rust & Security 36/64

Other Tools of Interest (for security)

◮ audit: check dependencies for crateswith security vulnerabilities

◮ crev: collaborative code review system

◮ fuzz: integrationwith libFuzzer

◮ geiger: find usages of unsafe Rust code
◮ Including in dependencies

◮ miri: find certain undefined behaviors

◮ outdated: find out of date dependencies

These tools are not part of the core distribution

ANSSI Rust & Security 37/64

cargo fuzz (1)

Fuzzing Rust Code

◮ Write a fuzzer (call function)

1 #[export_name="rust_fuzzer_test_input"]

2 pub extern fn go(data: &[u8]) {

3 let _ = der_parser::parse_der(data);
4 }

◮ Call libFuzzer

1 $ cargo +nightly fuzz run −−jobs 24 fuzzer_parse_der
2 ...

3 [2] #1188 NEW cov: 1106 ft: 6985 corp: 576/91Kb lim: 42560
4 exec/s: 1188 rss: 66Mb L: 15/3674MS: 4
5 CopyPart−EraseBytes−ChangeByte−ChangeBit−

◮ Uses a corpus by default

ANSSI Rust & Security 38/64

cargo fuzz (2)

Can be combinedwith coverage

◮ For ex. with kcov

1 $ kcov −−include−path .,.. ./cov \
2 ./target/debug/fuzzer_parse_der corpus/fuzzer_parse_der/*

◮ Shameless citation of author’s blog10

10Fuzzing Rust code: cargo-fuzz and honggfuzz. https://www.wzdftpd.net/

blog/rust-fuzzers.html.

ANSSI Rust & Security 39/64

https://www.wzdftpd.net/blog/rust-fuzzers.html
https://www.wzdftpd.net/blog/rust-fuzzers.html

Foreign Function Interface (FFI)

Interoperability

Foreign Function Interface

◮ Rust is designed to be interoperablewith other languages
◮ Calling functions
◮ Accessing foreign objects
◮ Exposing objects/functions

◮ All of this requires unsafe code

Goals

◮ Wrap C libraries and create safe abstractions

◮ Create “safe zones” inside programs
◮ Perform dangerous operations safely
◮ Exposed as Cmodules

◮ Use libraries

◮ Access hardware

ANSSI Rust & Security 41/64

SomeGeneral Points on FFI

◮ Rust is based on LLVM
◮ This simplifies interoperability

◮ However, Rust has its own memorymodel

◮ Extra caremust be take to
◮ Access or expose data properly
◮ Avoidmaking thememorymodel angry
◮ Handle lifetimes of foreign objects
◮ Ensure a robust interface (e.g handling

unwinding)

ANSSI Rust & Security 42/64

Data Layout

◮ Rust types use a specific representation
◮ For simple types, layout can be predicted
◮ Alignment and padding may differ from C
◮ Layout can changewith compiler versions

◮ Some types can use C representation repr(C)
◮ Tells the compiler to use the exact C layout
◮ Can be coupledwith bindgen or cbindgen to generate headers

◮ Other representations exist (transparent, packed, u16, ...)

◮ Not all types have a defined C representation (e.g enums)

ANSSI Rust & Security 43/64

Function Calls

◮ Rust has its own ABI
◮ Namemangling
◮ Hash added for specialization/versioning

◮ Some functions can bemarked extern "C"

◮ Input arguments are trusted by the compiler
◮ Values must be verified
◮ Type coercions must be applied
◮ Lifetimes must be added (or removed) manually

ANSSI Rust & Security 44/64

C Types

::std::ffi and ::std::os::raw contain FFI types

Rust Wrapped C Type C

String CString char *†

&str CStr char *†

void c_void void *

.

†Only if valid UTF-8, elsemapped to &[u8]

ANSSI Rust & Security 45/64

FFI Good Practises

◮ Writeminimal unsafe layer (or generate it)
◮ Test input values
◮ Build Rust objects
◮ Call safe code
◮ Extract result, convert it back to C

◮ Unwinding panicsmust be caught

◮ Use opaque typeswhen possible
◮ Memory from language x should (must) be freed in language x

ANSSI Rust & Security 46/64

The Rustonomicon

The Dark Arts of Unsafe Rust11 book covers

◮ Safe/Unsafe calls, and how to create safe abstractions

◮ Types,memory representation and coercions

◮ Exception safety

◮ Uninitializedmemory

◮ Concurrency

◮ . . .

11Rustonomicon. https://doc.rust-lang.org/nomicon/.

ANSSI Rust & Security 47/64

https://doc.rust-lang.org/nomicon/

Feedback: Suricata

Suricata

Suricata12 is a Network Intrusion Detection

system. It has to

◮ Parse untrusted data

◮ Containing complex protocols

◮ And apply lots of detection rules

◮ At very high speed

This is the perfect candidate!

12Suricata: Open Source IDS / IPS / NSM engine. https://suricata-ids.org/.

ANSSI Rust & Security 49/64

https://suricata-ids.org/

Codebase in 2016

◮ Open Source

◮ ~400 000 lines of C

◮ Many parsers
◮ Low-level network layers (IP, TCP, . . .)
◮ Application layers (HTTP, TLS, . . .)

◮ Heavilymultithreaded

ANSSI Rust & Security 50/64

Hardening Suricata

Rusticata (shameless citation #2):

◮ Proof of concept code

◮ Presented at Suricon 201613

◮ Integration of Rust into the detection engine

app-layer-rust

Session state

detect-rust

helper

functions

update

C engine

RParser-TLS

TLS State

Rusticata

call

tls-parser

TLS Parser

call call

update

get
get

Suricata

C code Rust code

13Pierre Chifflier. Securing Security Tools. https://suricon.net/

highlights-suricon-2016/. Suricon. 2016.

ANSSI Rust & Security 51/64

https://suricon.net/highlights-suricon-2016/
https://suricon.net/highlights-suricon-2016/

Rust Parsers

◮ Mostly based on Nom14

◮ Parser Combinators very easy to map in Rust
◮ Descending parsing
◮ Slices of decreasing length
◮ Length tests everywhere

P A S S l f t p @

input

sub-slice

initial slice

1 tag!("PASS") >> multispace1 >> rest

14Nom: Rust parser combinator framework. https://github.com/Geal/nom.

ANSSI Rust & Security 52/64

https://github.com/Geal/nom

Architecture

◮ Code separation
◮ Parsers (pure Rust)
◮ Interface/helpers (FFI)

ANSSI Rust & Security 53/64

Suricata & Rust

◮ Rust support added in 4.0 (August 1, 2017)

◮ Not using Rusticata, but inspired from
◮ Core team had to control tightly the implementation

◮ Shippedwith new Rust parsers
◮ SMB, NFS, NTP

◮ Rust support marked as experimental

ANSSI Rust & Security 54/64

Changes: Build System

◮ The Rust code is compiled to an archive file (.a)
◮ Exposing a C ABI
◮ Linked into the resulting binary

◮ Lack of runtime is a key advantage

◮ Rust not easily usable from autotools+make
◮ Compiler could be called in Makefile,
◮ But dependencieswould have to be resolvedmanually
◮ Choice: cargo is used from autotools

ANSSI Rust & Security 55/64

Changes: Distributing code

Difficulties: packagemanager vs distributing sources

◮ cargo uses internet
◮ breaks offline builds

◮ cargo fetches dependencies for every build
◮ breaks reproducible builds

Solution: distributing dependencies (vendoring, cargo vendor)

ANSSI Rust & Security 56/64

Changes: LinuxDistributions

◮ Rust & cargo not shipped in Linux distros (or outdated)
◮ Many features not usable in practice
◮ Forced targeting aminimum version
◮ With time, situation improved

ANSSI Rust & Security 57/64

Changes: Performances

◮ Benchmarks by BradWoodberg in 2017 and 2019

◮ Rust overhead: between 5% and 10%

◮ May not be an entirely fair comparison ,

◮ More parsers and featureswhen Rust is enabled

◮ Considered as acceptable by the core team

ANSSI Rust & Security 58/64

Rust& Suricata: 2 years later (2019)

◮ Rust support nowmandatory
◮ Especially for new parsers

◮ Many included (complex) parsers
◮ SNMP, Kerberos, SIP, FTP, . . .
◮ Several externally contributed

◮ 5.5% of total lines of code

◮ May replace complex parts in the future
◮ For ex. the DER parser (X.509 certificates)

ANSSI Rust & Security 59/64

Team Feedback

◮ Overall: very good

◮ Macros: hard to understand

◮ Code review: less doubts and dangers

◮ Required some experience in the language

◮ Some parserswould not have been added ifwritten in C

ANSSI Rust & Security 60/64

Problems not solved yet

◮ Lots of code duplication for C interface

◮ C unit tests vs Rust unit tests

◮ Doc generation: separate tools

ANSSI Rust & Security 61/64

Conclusion

Summary

◮ Modern Language (steep learning curve), good for security

◮ Both a Static Analyzer15 16 and a Compiler

◮ Enforces good practices and checks them

◮ Huge improvement over C

15Itwill yell at you until your code is acceptable
16Hard time for average C developers

ANSSI Rust & Security 63/64

Conclusion

Rust & Security

◮ Rust is amodern language
◮ Builtwith security in mind
◮ Based on new concepts

◮ Lacks some tools
◮ But is evolving fast

◮ ANSSI Recommendations17

17ANSSI Recommendations for secure applications developmentwith Rust.

https://github.com/ANSSI-FR/rust-guide.

ANSSI Rust & Security 64/64

https://github.com/ANSSI-FR/rust-guide

	Introduction
	Rust Language Properties
	The Rust Ecosystem
	Foreign Function Interface (FFI)
	Feedback: Suricata
	Conclusion

